EFFECTS OF STRUCTURAL CHANGES IN THE TURKISH BANKING SECTOR

SINCE 2001 CRISIS AND A RISK ANALYSIS FOR THE SECTOR

Kenan LOPCU Department of Econometrics Çukurova University Adana-Turkey <u>klopcu@cu.edu.tr</u> Süleyman Bilgin KILIÇ Department of Econometrics Çukurova University Adana-Turkey sbilgin@cu.edu.tr

Prepared for presentation at the 10th Annual International Meeting of the MEEA June 23-24, 2011, Barcelona, Spain

Abstract

The objective of this paper is to measure the failure risk of Turkish commercial banks. We use 29 financial ratios across 1996-2000 and apply principal component analysis to determine significant changes in the financial conditions of banks. We then employ these financial conditions, captured in factor scores, in the logit analysis to build an early warning model. Finally, we predict the probabilities of failure for 25 commercial banks from 2002-to date. The results overall indicate that almost all 25 banks currently operating in the Turkish banking sector are quite sound and far from failure.

JEL Classification: G33; C25; C52; C58; G21

Keywords: Bank Failures, Principal Component Analysis, Logit Model

1. Introduction

Bank failures bring to bear high costs on economies as well as on governments and eventually on the public and the taxpayers. During the past two decades, many developed and developing economies have experienced large scale bank failures, and estimates for average bank restructuring costs range from 6% to 10% of the Gross Domestic Product (GDP) (Hutchison and McDill, 1999). In Turkey the amount of restructuring is approximately 30% of the GDP (Kılıç, 2003). Obviously, if bank failure were a predictable event, bank restructuring costs could be minimized. Additionally, if early warning systems are used effectively, the regulatory actions necessary to prevent banks from failing could be taken in advance or in the least a more orderly process of bank closures could be administered.

Early bank failure studies employed multivariate statistical analyses, including regression analysis. For example, Meyer and Pifer (1970), and Rose and Kolari (1985) used discriminant models; Sinkey (1975) used logit models; Cole and Gunther (1998), and Pantolone and Platt (1987) used probit models.

In terms of American industrial firms, Zavgren (1985) applied Shannon's (1949) entropy measure and found that the information content of the logit model is significant even five years prior to failure, and increases up to one year immediately prior to failure. Keasey and McGuinness (1990) tested to determine if the entropy measure of the information contained in logit functions as developed by Zavgren (1985) offered comparable results when used for UK industrial firms. In that study, they concluded that the measurement was not applicable to UK industrial firms.

Some studies combine nonparametric approaches with parametric multivariate statistical methods including discriminant or logit analysis for bank failure prediction. For example, Tam and Kiang (1992) introduce the neural network approach to perform

discriminant analysis as a promising method of evaluating banking conditions. Jo and Han (1996) suggest an integrated model approach for bankruptcy prediction using discriminant analysis and two artificial intelligence models, namely, neural network and case-based forecasting. They conclude that integrated models have higher prediction accuracy than individual models. Alam, Booth and Thordarson (2000) state that a fuzzy clustering algorithm and self-organizing neural networks provide valuable information to identify potentially failing banks. Kolari et al. (2002) use both parametric logit analysis and the nonparametric trait approach to develop computer-based early warning systems to identify large bank failures. They conclude that the system provides valuable information about the future viability of large banks. Lam and Moy (2002) combine several discriminant methods and perform simulation analysis to enhance the accuracy of results for classification problems in discriminant analysis.

Kılıç (2003), and Canbaş, Çabuk and Kılıç (2005) combined Principal Component analysis (PCA) with discriminant, logit and probit models to develop an Integrated Early Warning System for predicting bank failures in the Turkish banking sector one year prior to the failure. More recently, Shin and Kılıç (2006) used a PCA-based neural network committee model for early warning of bank failure. Additionally, Shin, Lee, and Kılıç (2006) used ensemble prediction of bank failure through diversification of input features.

In the current study, as a follow-up to the study by Canbaş, Çabuk and Kılıç (2005), an expanded data set of commercial banks are pooled and the principal component analysis and the logit analysis are combined to estimate the probabilities of banks to fail. In particular, we attempt to build a model to predict bank failures one year in advance of the failure. In particular, representing the banks by a dummy dependent variable, y_{bt} , we assign the value of 1 in year *t*-1 and *t* for the banks that have failed in year *t*. We then exclude those banks from the analysis after the year failure has been announced. Next, using the PCA, the ratios

of banks are grouped under financial factors, which can significantly explain the changes in financial conditions of banks before failure. Factor scores are estimated for each bank, and these scores are then used as independent variables in estimating the logit model and failure probabilities.

Bank failures can be considered as a continuous process in time, although failure is recorded at a specific point in time. We maintain that failure is mainly due to continuously worsening financial conditions attributable to a bank's misguided internal management policies over a number of years. Financial ratios provide valuable quantitative information about changes in financial conditions of banks. Decision makers should examine banks over time to capture information about the progress towards failure.

The major contribution of this study to the literature is the use of information provided by the financial factors in estimating a model. As explained in more detail in section 2.2, the use of uncorrelated financial factors provides more refined and enhanced information to the decision makers than the direct use of financial ratios.

The rest of this article is organized as follows: Section 2 reports the methodology and results, including the sample and variable selection; the determination of significant financial factors; and the estimation and interpretation of the results from the logit model. Then, Section 3 concludes the article. Finally Section 4 provides a brief summary of the early warning system developed in this paper.

2. Data Methodology and Results

2.1. Data, sample and variable selection

Topics in Middle Eastern and African Economies Vol. 14, September 2012

The sample set covers all commercial banks in the Turkish banking sector for the period of 1996-2009 (Tables 6 and 9)¹, including 22 banks that failed between 1997 and 2003. In 1999 and 2000 the Banks Association of Turkey (BAT) published 49 financial ratios annually for each bank operating in the Turkish banking sector. Data started in 1988 and included ratios for banks whose failures had been announced and whose operations had been transferred to the Savings Deposits Insurance Fund (SDIF).^{2, 3} While the data started in 1988, many of the ratios for a number of banks were missing for the initial years and became more regular after 1996, although a few banks still were missing a few ratios.⁴

Starting with 2002 the BAT began to publish 66 annual ratios for each bank. ⁵ The ratios published before and after 2001 are inconsistent in term of the banks operating in the industry and the ratios published for each bank. However, 29 ratios are compatible in the data published prior to 2001 and after 2001 (Table 1). Thus, our data set includes 29 common annual ratios covering the period 1996 to 2009, with the exception of 2001.⁶ All the branch and activity ratios in current TL are converted to 2005 TL using the revaluation index according to the tax procedure laws.⁷ None of these ratios turns out to be significant in the ANOVA, except net income per branch (R26). Using the CPI and the PPI from the OECD database for Turkey produces similar conversion rates for these ratios.

¹ The number of banks in the sector changes from year to year because of mergers, buyouts and failures. The maximum number included in the analysis is 46 for 1997. As of 2011 25 commercial banks operate in the Turkish banking sector.

² The SDIF was managed by the Turkish Central Bank during the 1983-2000 period, but was transferred to the Banking Regulation and Supervising Agency (BRSA) on August 31, 2000. ³ In Turkey, the BRSA is a legal entity with administrative and financial autonomy which is responsible for ensuring

³ In Turkey, the BRSA is a legal entity with administrative and financial autonomy which is responsible for ensuring application of the Banks Act No 4389 issued July 1999. It is charged with laying down rules governing incorporation, management, operations, acquisition, merger, liquidation and supervision of banks in order to protect the rights and interests of depositors, and ensuring an efficient functioning of the credit system by giving due consideration to the confidence and stability of financial markets and the requirements of economic development.

⁴ Missing ratios for the year 1996 and after are calculated by the authors using the averages of nearby years and sector and group shares.

⁵ The former 49 and the 66 ratios in effect can be found at the BAT web address: http://www.tbb.org.tr/eng/Banka_ve_Sektor_Bilgileri/Istatistiki_Raporlar.aspx

nttp://www.tob.org.tr/eng/Banka_ve_Sektor_Bilgileri/Istatistiki_Kaporlar.aspx

⁶ Ratios were not published by BAT for 2001. 2001 was the year of financial and economic crises in Turkey. Starting on February 21, 2001, the Turkish lira lost it value sharply, interest rates sky-rocketed, and inflation began to soar. The Turkish GDP was reduced significantly in the same year. After the 2001 crisis, as part of a larger economic reform package the banking sector was reorganized. Of the 22 failed banks included in our data set, 14 failed during the period between October 2000 and July 2003 (Table 6).

⁷ The revaluation index used can be found at the web address: <u>http://www.ivdb.gov.tr/pratik/oranlar/kirk.htm</u>

Code	Ratio Categories and Names	Code	Ratio Categories and Names
	Assets Quality, %		Share in Group, %
R1	Total Loans/Total Assets	R17	Total Assets
R2	Non Performing Loans/Total Loans	R18	Total Loans
R3	Permanent Assets/Total Assets	R19	Total Deposits
	Liquidity, %		Branch Ratios, Million TRY
R4	Liquid Assets/Total Assets	R20	Total Assets / No. of Branches
R5	Liquid Assets/(Deposits + Non-deposit Funds)	R21	Total Deposits / No. of Branches
R6	Fx Liquid Assets/Fx Liabilities	R22	TL Deposits / No. of Branches
	Profitability, %	R23	Fx Deposits / No. of Branches
R7	Net Income(Loss)/Average T.Assets	R24	No. of Personnel / No. of Branches
R8	Net Income(Loss)/Shareholder's Equity	R25	Total Loans / No. of Branches
R9	Income Before Tax / Average Total Assets	R26	Net Income / No. of Branches
	Income-Expenditure Structure, %		Activity Ratios
R10	Interest Income/Total Expense	R27	(Salary and Emp'ee Bene.+Res. for Retire.)/No.of Pers.(Billion TL)
R11	Interest Income/Interest Expenses	R28	Reserve for Seniority Pay/No.of Personne (Billion TL)
R12	Non-Interest Income/Non-Interest Expenses	R29	(Salaries and Emp'ee Benefits+Reserve for Retirement)/T.Assets
R13	Total Income/Total Expenditure		
	Share in Sector, %		
R14	Total Assets		
R15	Total Loans		
R16	Total Deposits		

We partitioned the data set into two sub-samples; one is the model sample covering the period 1996-2000, and the other is the test (holdout) sample covering the period of 2002-2009. We use the model sample to estimate the model. Then, using the estimated model we predict the failure risk of the banks for the holdout sample.

Using the uni-variate analysis of variance (ANOVA), we determine the most relevant financial ratios for bank failures. The null hypothesis in ANOVA is the equality of the means

of the failed and non-failed banks for a given ratio. Table 2 presents the results of the ANOVA tests, including the F statistics and the corresponding significance levels for the selected ratios for each year. The table reveals that a total of 18 out of 29 ratios emerge as statistically significant. We select the ratios that are significant at the 5% level. These are the relevant financial ratios that have a high discriminating ability for the two groups, failed versus non-failed banks.

	Non-failed		Failed		Total		Test of group means' equality			
		Std.				Std.	Wilks'			
Code	Mean	Dev.	Mean	Std. Dev.	Mean	Dev.	Lambda	F(1,215)	Sig.	
R1	34.1036	14.6621	30.3384	13.8037	33.5657	14.5716	0.9918	1.7805	0.1835	
R2	5.7667	23.1804	160.2178	364.2305	27.8311	147.7170	0.8655	33.4078	0.0000**	
R3	8.8675	9.3281	16.4104	13.2735	9.9451	10.2954	0.9340	15.2003	0.0001**	
R4	44.5053	17.9357	33.7179	16.5820	42.9643	18.1115	0.9564	9.8110	0.0020**	
R5	56.8031	28.9613	32.6135	17.9779	53.3474	28.9007	0.9138	20.2758	0.0000**	
R6	45.4642	21.3907	25.9413	16.4373	42.6753	21.8244	0.9016	23.4751	0.0000**	
R7	3.4737	4.1249	-31.8493	44.9519	-1.5724	21.1828	0.6579	111.7805	0.0000**	
R8	40.3776	135.7328	-464.7252	2512.2586	-31.7799	961.1210	0.9660	7.5616	0.0065**	
R9	4.7863	5.1964	-31.5578	45.1532	-0.4058	21.6515	0.6534	114.0583	0.0000**	
R10	100.6046	21.2771	60.4223	265.4029	94.8643	101.8308	0.9808	4.1986	0.0417*	
R11	239.4059	345.0996	116.3624	62.6488	221.8283	323.1240	0.9822	3.9048	0.0494*	
R12	-0.3365	123.0795	-47.3023	114.7195	-7.0459	122.7749	0.9820	3.9412	0.0484*	
R13	131.9842	37.1055	68.0839	53.0882	122.8556	45.5298	0.7577	68.7581	0.0000**	
R14	2.2697	3.3797	0.9579	0.7894	2.0823	3.1751	0.9790	4.6115	0.0329*	
R15	2.2337	3.3960	0.8852	0.8878	2.0410	3.1954	0.9781	4.8152	0.0293*	
R16	2.3573	3.8761	1.3202	0.9174	2.2092	3.6217	0.9899	2.1909	0.1403	
R17	6.5566	10.2492	11.3657	16.4547	7.2436	11.4202	0.9782	4.7948	0.0296*	
R18	6.8147	11.4505	16.0254	29.7893	8.1306	15.6838	0.9576	9.5259	0.0023**	
R19	6.8158	11.5265	10.6503	13.4050	7.3636	11.8557	0.9871	2.8028	0.0956	
R20	110.8392	257.9485	50.4794	38.1760	102.2164	240.0805	0.9922	1.6849	0.1957	
R21	62.8361	169.3690	47.1761	35.9900	60.5990	157.4134	0.9988	0.2621	0.6092	
R22	20.6444	56.9123	23.8176	25.7226	21.0977	53.5470	0.9996	0.0929	0.7608	
R23	42.1918	117.3095	23.3586	14.6471	39.5013	108.9032	0.9963	0.7939	0.3739	
R24	36.1951	98.7178	22.4984	7.6157	34.2384	91.5299	0.9972	0.5939	0.4418	
R25	35.8399	91.8582	12.9239	8.8547	32.5662	85.4542	0.9912	1.9190	0.1674	
R26	4.2098	14.8976	-15.9328	23.0329	1.3323	17.7110	0.8409	40.6825	0.0000**	
R27	53.1214	25.9585	56.7137	12.9024	53.6346	24.5325	0.9974	0.5686	0.4516	
R28	1.3451	1.8359	1.3076	1.4451	1.3397	1.7824	0.9999	0.0117	0.9140	
R29	2.5742	2.0631	3.4525	2.3327	2.6997	2.1204	0.9789	4.6354	0.0324*	
* and *	* represent 9	%5 and %1	significance	level, respec	tively					

Table 2: Tests of Equality of Group Means

2.2. Principal components analysis and determination of the significant financial

factors

Topics in Middle Eastern and African Economies Vol. 14, September 2012

The use of PCA and financial factors in estimating a model provides more refined and enhanced information to decision makers compared to the direct use of financial ratios for several reasons. Firstly, PCA allows conversion of a large number of closely related financial ratios into a small number of financial factors and thus helping researchers understand underlying relationships better. Secondly, financial factors permit to explain the percentage of change in the total variance of the financial condition of banks over time.

Furthermore, using financial ratios directly in estimating logistic or other similar models would be problematic because most of the financial ratios are correlated with each other. This leads to a multicollinearity problem among independent variables (ratios). For example, Kılıç (2003) showed that most of the financial ratios in the Turkish banking system are highly correlated. This is an important consideration because a high degree of multicollinearity produces large variation in the estimated coefficients of the ratios. Particularly, the coefficients can change substantially depending on which variables are in or out of the model and also the order in which they are placed in the model. In summary, PCA converts a set of closely related (correlated) financial ratios into uncorrelated financial factors. The lack of giving adequate consideration to these issues is an important shortcoming of traditional bankruptcy studies conducted previously.

Applying PCA, we estimate 6 financial factors that could significantly explain the changes in the financial condition of the banks for the period considered (1996-2000). We estimate the total variance explained by each factor (eigenvalues) in order to determine how many factors are needed to represent the selected financial ratios. Table 3 presents the estimated factors and corresponding eigenvalues of the estimated factors. Only those factors that have variances greater than 1 (eigenvalue >1) are selected. Factors with a variance less than 1 are not any better than a single ratio since each standardized ratio has a variance of 1.

Table 3: Total variance explained by the selected factors

	Variance Explained							
Component	Eigenvalue	% of Variance	Cumulative %					
F1	4.55	25.27	25.27					
F2	3.53	19.62	44.89					
F3	1.78	9.90	54.79					
F4	1.37	7.59	62.39					
F5	1.16	6.46	68.85					
F6	1.02	5.69	74.54					

For the period 1996-2000, F1 is the most important factor in explaining changes in the financial conditions of the banks. It explains 25.27 % of the total variance of the statistically significant financial ratios, whereas factor F2 explains 19.62 % of the total variance. The 6 common factors together explain 74.54 % of the total changes in the financial conditions of the commercial banks for the period considered.

After the determination of the significant factors, we calculate the regression factor scores estimated for each bank and each year. We, then, use these factor scores as independent variables in estimating the logit model and the probabilities of failure.

2.3. Estimation of the logit model

The basic assumption in the estimation of the logit model is that banks can be split into two groups, namely, the non-failed group and the failed group. Thus, banks can be represented by a dummy dependent variable y_{bt} . This variable takes the value of I in year t-I and t if the bank b has failed in year t and 0 otherwise. The logit analysis is based on a cumulative logistic distribution function providing the probability of a bank belonging to one of the prescribed classes given the financial characteristics of the bank.

As mentioned earlier, the factor regression scores obtained from the PCA serve as independent variables in estimating the logit model. We employ the backward Wald method in estimating the logit model. This is a stepwise method which eliminates variables from the model based on the probabilities of the Wald statistic, providing the most parsimonious model. Hence, among the 6 factors that were previously determined, and the constant, α , the

backward Wald stepwise method selects only factors F1, F3, F4 and F5 as independent variables.

able 4. Estimated logit model								
Factors	β	Exp (\hat{eta})	S.E.	Wald	P-Value			
F1	-3.915	0.020	0.900	18.937	0.000			
F3	-1.498	0.224	0.458	10.701	0.001			
F4	-1.632	0.195	0.697	5.486	0.019			
F5	-0.561	0.571	0.264	4.514	0.034			
Constant	-2.630	0.072	0.405	42.160	0.000			
		Model s	ummary					
-2 Log like	lihood	Cox & Snell	Cox & Snell R Square		ke R Square			
89.276		0.336		0.600				

 Table 4: Estimated logit model

Table 4 presents the test statistics for the estimated coefficients of the logit model. Here, all of the coefficients of the estimated logit model are now statistically significant. Thus, the cumulative logistic distribution function used in calculating the failure probabilities for each bank, b, in year t is given by

$$p(y_{bt} = 1) = \frac{1}{1 + e^{-(-2.63 - 3.915F1_{bt} - 1.498F3_{bt} - 1.632F4_{bt} - 0.561F5_{bt})}}$$

The lower panel of Table 4 presents the overall test statistics for the estimated logit model. The likelihood ratio test is statistically significant at the 1% level; Cox & Snell R Square is 33.6 %; and Nagelkerke R Square is 60 %. Given the limitations in data, such as starting with a limited number of ratios and not being able to include 2001 in the analysis when 9 of the failures were announced, we interpret these results as the model having a reasonably high explanatory power.

The performance of the estimated logit model can also be evaluated according to the classification achievements. Considering the cutoff point as 0.500, our null hypothesis is that a bank will fail, and the alternative hypothesis is that it will not fail. The summary of the

classification results are presented in Table 5. Here, overall classification accuracy is very high (92.63%). Type I error (the probability of rejecting the null hypothesis when it is correct) is 41.94 % (13/31). We must note that the failures of 7 of these banks are correctly predicted by the model for the year of failure but not one year prior to the failure.⁸ For 4 of these banks the year of failure is not included in the analysis as they failed in 2001, the year for which data were not available.⁹ Type II error (the probability of accepting the null hypothesis when it is not correct) is 1.64 % (3/186), noting that two of these banks eventually failed (Bank Express and Milli Aydın Bankası). Here, a type I error means that an actually non-failed bank is classified as non-failed, while a type II error is more important than a type II error because, as stated previously, the international average for bank failure costs was estimated to be 6 to 10% of GDP, prior to the recent global turmoil in the financial markets. If a bank failure is predicted in advance, the cost of the failure can at least be minimized, even if it cannot be completely eliminated.

Actual	Predict	ample (1996-2000)	
Observed	Non- Failure (0)	Failure (1)	Percentage Correct
Non-Failure (0)	183	3	98.36
Failure (1)	13	18	58.06
Overall Percentage			92.63
The cut value is 0.500			

 Table 5: Classification results for the model sample (1996-2000)

⁸ These banks are Bank Ekspres, Bank Kapital, Egebank, Eskişehir Bank, Etibank, Sümerbank and Türk Ticaret Bank.

⁹ These are Bayındırbank, Kentbank, Toprakbank and Türkiye Emlak Bank.

BANKS	Failure	1996	1997	1998	1999	2000	Average
Adabank A.Ş.	-	0.0139	0.0207	0.0277	0.0096	0.0026	0.0149
Akbank T.A.Ş.	-	0.0020	0.0037	0.0019	0.0026	0.0077	0.0036
Alternatif Bank A.Ş.	-	0.0076	0.0830	0.0550	0.0038	0.1075	0.0514
Anadolubank A.Ş.	-	N. A.	0.0000	0.0011	0.0516	0.0577	0.0276
Arap Türk Bankası A.Ş.	-	0.0077	0.0253	0.0092	0.0022	0.0068	0.0102
Denizbank A.Ş.	-	N. A.	0.0042	0.0270	0.0521	0.1223	0.0514
Fiba Bank A.Ş.	-	0.0094	0.5370*	0.1065	0.0113	0.0951	0.1519
Finans Bank A.Ş.	-	0.0076	0.0111	0.0083	0.0079	0.0212	0.0112
HSBC Bank A.Ş.	-	0.0164	0.0362	0.2146	0.0000	0.0094	0.0553
Koçbank A.Ş.	-	0.0020	0.0311	0.0188	0.0055	0.1081	0.0331
MNG Bank A.Ş.	-	0.0001	0.0001	0.0011	0.0218	0.1427	0.0332
Osmanlı Bankası A.Ş.	-	0.0170	0.0555	0.0437	0.0206	0.0589	0.0391
Oyak Bank A.Ş.	-	0.0001	0.0034	0.0016	0.0129	0.2885	0.0613
Şekerbank T.A.Ş.	-	0.0684	0.1217	0.0637	0.0461	0.0730	0.0746
Tekstil Bankası A.Ş.	-	0.0241	0.0333	0.0113	0.0256	0.0508	0.0290
Türk Dış Ticaret Bankası A.Ş.	-	0.0113	0.0684	0.0043	0.0088	0.0047	0.0195
Türk Ekonomi Bankası A.Ş.	-	0.0228	0.0473	0.0131	0.0125	0.0232	0.0238
Turkish Bank A.Ş.	-	0.0346	0.0218	0.0134	0.0188	0.0058	0.0189
T.C. Ziraat Bankası A.Ş.	-	0.0352	0.0661	0.1034	0.1116	0.1038	0.0840
Türkiye Garanti Bankası A.Ş.	-	0.0181	0.0158	0.0105	0.0214	0.0273	0.0186
Türkiye Halk Bankası A.Ş.	-	0.0387	0.0515	0.1019	0.0751	0.1382	0.0811
Türkiye İş Bankası A.Ş.	-	0.0067	0.0076	0.0100	0.0043	0.0157	0.0089
Türkiye Vakıflar Bankası T.A.O.	-	0.0287	0.0123	0.0193	0.0233	0.0932	0.0354
Yapı ve Kredi Bankası A.Ş.	-	0.0366	0.0231	0.0459	0.0109	0.0108	0.0255
Bank Ekspres A.Ş.	Dec. 1998	0.0918	0.0676*	1.0000	-	-	0.3865
Bank Kapital Türk A.Ş.	Oct. 2000	0.0102	0.0502	0.0907	0.2753*	1.0000	0.2853
Bayındırbank A.Ş.	July 2001	0.0665	0.7535*	0.0281	0.0297	0.0294*	0.1814
Demirbank T.A.Ş.	Dec. 2000	0.0330	0.0431	0.0148	0.0108*	0.224*	0.0651
Ege Giyim Sanayicileri Bankası A.Ş.	July 2001	0.0329	0.1244	0.1572	0.1820	0.5422	0.2077
Egebank A.Ş.	Dec. 1999	0.0913	0.0814	0.2875*	1.0000	-	0.3651
Eskişehir Bankası T.A.Ş.	Dec. 1999	0.0977	0.1330	0.4907*	0.9999	-	0.4303
Etibank A.Ş.	Oct. 2000	0.0063	0.4424	0.0726	0.1113*	0.9987	0.3263
İktisat Bankası T.A.Ş.	March 2001	0.0091	0.0322	0.0912	0.0770	1.0000	0.2419
Interbank	Jan. 1999	0.3233	0.4088	0.9997	0.9812	-	0.6783
Kentbank A.Ş.	July 2001	0.0904	0.0838	0.1030	0.0748	0.0828*	0.0870
Milli Aydın Bankası T.A.Ş.	July 2001	0.1057	0.1261	0.3109	0.6475*	0.8214	0.4023
Pamukbank T.A.Ş.	June 2002	0.2059	0.1411	0.1233	0.0908	0.0570	0.1236
Sitebank A.Ş.	July 2001	0.0000	0.0003	0.1293	0.1526	0.6678	0.1900
Sümerbank A.Ş.	Dec. 1999	0.0317	0.0386	0.3304*	0.9984	-	0.3498
Toprakbank A.Ş.	Nov. 2001	0.0203	0.0270	0.0174	0.0266	0.0933*	0.0369
Türk Ticaret Bankası A.Ş.	Nov. 1997	0.1480*	0.8357	-	-	-	0.4919
Türkiye Emlak Bankası A.Ş.	July 2001	0.0720	0.1370	0.1513	0.0369	0.1372*	0.1069
Türkiye İmar Bankası T.A.Ş.	July 2003	0.0478	0.0318	0.0742	0.2539	0.1150	0.1045

 Table 6: Estimated failure probabilities for 1996-2000

Average (Fail)		0.0826	0.1799	0.2785	0.3975	0.3620	0.2601
Average (Non-Fail)		0.0186	0.0533	0.0381	0.0233	0.0656	0.0398
Average		0.0506	0.1139	0.1310	0.1934	0.2175	0.1413
Yurt Ticaret ve Kredi Bankası A.Ş.	Dec. 1999	0.1577	0.1583	0.5497	1.0000	-	0.4664
Ulusal Bank T.A.Ş.	Feb. 2001	0.0257	0.0002	0.0003	0.0019	0.9217	0.1900
T.T.Bankası Yaşarbank A.Ş.	Dec. 1999	0.1488	0.2406	0.8262	1.0000	-	0.5539

*N.A.: Not available, * Represents misclassifications by the estimated logit model* Table 6 shows the probability of failures obtained from the logit model for the model

sample which covers the period of 1996-2000. The last row and the last column show the average probabilities of failure. We can explain the underlying relationships among financial ratios and factors by observing factor loadings. Varimax (orthogonal) factor rotation in the PCA is used for this purpose. This method maximizes the variance of loadings within factors and produces a structure that is easier to interpret. Table 7 presents the factor loadings obtained from the orthogonally rotated factor solution. Ratios with factor loadings less than 0.5 are omitted.

According to Table 7 the significant loadings for Factor 1 (F1) are R7, R9, R2, R26, and R13 in a descending order reflecting mostly profitability and income-related ratios and affecting F1 positively with the exception of R2. Hence, as the first component, F1, which contributes the most in explaining the changes in the financial conditions of the banks during the period, can be considered as the income-profitability factor.

The significant loadings for Factor 3 (F3) are R4, R6 and R5, all liquidity ratios, all affecting F3 positively and all reflecting a bank's readiness to absorb TL and FC liquidity risk. Thus, F3 can be thought of as the liquidity factor (TL and FC). Ratios that are significant for Factor 4 are R11 and R13, both reflecting the income-expenditure structure of the banks and both affecting F4 positively. Finally, F5 is affected by R12 and R10, both again reflecting the income-expenditure structure. R12's impact is positive while R10 impacts F5 negatively and indicates the interest rate risk.

	F1	F3	F4	F5
R7 (Net Profit (Losses) / Total Assets)	0.937			
R9 (Income Before Taxes / Total Assets)	0.934			
R2 (Loans under follow-up (net) / Total Loans)	-0.748			
R26 (Net Income / No. of Branches)	0.713			
R4 (Liquid Assets / Total Assets)		0.846		
R6 (FC Liquid Assets / FC Liabilities)		0.842		
R5 (Liquid Assets / (Deposits + Non-Deposit Funds))		0.839		
R11 (Interest Income / Interest Expense)			0.91	
R13 (Total Income / Total Expense)	0.632		0.667	
R12 (Non-Interest Income / Non-Interest Expense)				0.773
R10 (Interest Income / Total Expenses)				-0.609

Table 7: Orthogonally rotated factor solutions

Turning to the model's out-of-sample predictive ability for the commercial banks currently operating in the banking industry, tables 8 and 9 provide a summary of classification results, and the probability of failures for the holdout sample 2002-2009, respectively. The last row and last column of table 9 give the average failure probabilities. Here, the overall classification accuracy is extremely high (99.00%). Only in two cases, where the income-profitability ratios of the relevant banks are somewhat problematic, does the model predict failure of actually non-failed banks. In other words, the probability of accepting the null hypothesis when it is not correct (Type II error) is only 1.00 % (2/200).

Actual	Predict		
Observed	Non- Failure (0)	Failure (1)	Percentage Correct
Non-Failure (0)	198	2	99.00
Failure (1)	-	-	-
Overall Percentage			99.00

 Table 8: Classification results for the holdout sample (2002- 2009)

The cut value is 0.500

	2002	2003	2004	2005	2006	2007	2008	2009	Average
T. C. Ziraat Bankası A.Ş.	0.0365	0.0097	0.0060	0.0052	0.0040	0.0040	0.0217	0.0082	0.0119
Türkiye Halk Bankası A.Ş.	0.0738	0.0449	0.0723	0.0564	0.0270	0.0227	0.0626	0.0315	0.0489
Türkiye Vakıflar Bankası T.A.O.	0.0225	0.0098	0.0055	0.0076	0.0108	0.0161	0.0415	0.0153	0.0161
Adabank A.Ş.	0.0801	0.0632	0.6937*	0.0012	0.0000	0.0000	0.0000	0.0000	0.1048
Akbank T.A.Ş.	0.0021	0.0009	0.0015	0.0027	0.0050	0.0063	0.0295	0.0083	0.0070
Alternatif Bank A.Ş.	0.4168	0.1231	0.0891	0.0826	0.0589	0.0564	0.0543	0.0844	0.1207
Anadolubank A.Ş.	0.1683	0.0665	0.0397	0.0773	0.0753	0.0685	0.0723	0.0484	0.0770
Şekerbank T.A.Ş.	0.1705	0.0865	0.0239	0.0173	0.0151	0.0425	0.1067	0.0673	0.0662
Tekstil Bankası A.Ş.	0.0850	0.0501	0.0702	0.0995	0.0645	0.1270	0.1458	0.1092	0.0939
Turkish Bank A.Ş.	0.0044	0.0043	0.0077	0.0131	0.0097	0.0197	0.0083	0.0162	0.0104
Türk Ekonomi Bankası A.Ş.	0.0162	0.0215	0.0283	0.0446	0.0550	0.0676	0.0661	0.0594	0.0448
Türkiye Garanti Bankası A.Ş.	0.0654	0.0310	0.0184	0.0127	0.0177	0.0082	0.0231	0.0047	0.0227
Türkiye İş Bankası A.Ş.	0.0152	0.0059	0.0030	0.0018	0.0037	0.0035	0.0079	0.0037	0.0056
Yapı ve Kredi Bankası A.Ş.	0.0083	0.0399	0.0408	0.5207*	0.0728	0.0913	0.0572	0.0253	0.1070
Arap Türk Bankası A.Ş.	0.0057	0.0091	0.0324	0.0382	0.0365	0.0662	0.1024	0.0069	0.0372
Citibank A.Ş.	0.0033	0.0145	0.0162	0.0027	0.0067	0.0099	0.0388	0.0224	0.0143
Denizbank A.Ş.	0.0187	0.0105	0.0186	0.0177	0.0235	0.0901	0.0840	0.0243	0.0359
Deutsche Bank A.Ş.	0.0000	0.0000	0.0000	0.0001	0.0004	0.0027	0.0019	0.0000	0.0006
Eurobank Tekfen A.Ş.	0.0421	0.0479	0.0640	0.1025	0.0502	0.0912	0.1028	0.0593	0.0700
Finans Bank A.Ş.	0.0420	0.0409	0.0338	0.0252	0.0094	0.0484	0.0916	0.0289	0.0400
Fortis Bank A.Ş.	0.0127	0.0195	0.0303	0.0626	0.0619	0.0683	0.0785	0.0881	0.0527
HSBC Bank A.Ş.	0.0099	0.0105	0.0255	0.0215	0.0482	0.0419	0.0470	0.0249	0.0287
ING Bank A.Ş.	0.0910	0.1358	0.0706	0.0491	0.0739	0.1306	0.1127	0.1055	0.0962
Millennium Bank A.Ş.	0.0284	0.2800	0.3685	0.1883	0.3547	0.2332	0.2367	0.3451	0.2544
Turkland Bank A.Ş.	0.0151	0.0197	0.0192	0.0768	0.1562	0.2279	0.1680	0.0977	0.0976
Average	0.0574	0.0458	0.0712	0.0611	0.0496	0.0618	0.0705	0.0514	0.0586
* Represents misclassifications b	y the esti	mated log	it model						

 Table 9: Predicted failure probabilities for 2002-2009

Figure1: Average probability of failures by years

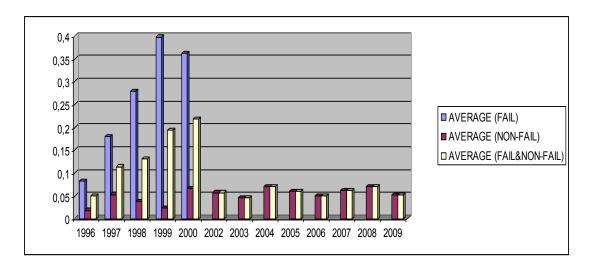


Figure 1 above, based on the last rows of Tables 6 and 9, and illustrates the average probability of failures predicted by the logit model for all the commercial banks in Turkey since 1996. The economic and financial measures that were undertaken after the 2001 crisis, which in part were designed to better scrutinize the financial system and specifically banks, seem to be working. Despite the deterioration of macroeconomic conditions in Turkey, in terms of growth, unemployment, inflation, difficulties in the export markets, a global financial crisis shaking the world, and a relatively unstable political environment in recent years, the Turkish commercial banks appear to be quite far from the risk of failure.

3. Concluding Remarks

Results of this study show that if decision makers monitor banks over time, they can capture a significant amount of information about the changes in the financial conditions of banks. Using uncorrelated financial factors provides more refined and enhanced information to decision makers than using financial ratios directly. As such, they can become part of the early warning toolkit available to internal management and outside bank supervising agencies.

Topics in Middle Eastern and African Economies Vol. 14, September 2012

Economic conditions also appear to affect the probability of bank failures. Banking crises happen when the macroeconomic environment is weak, particularly when growth is low and inflation is high. In addition, high real interest rates are in general associated with systemic problems of the banking sector (Demirgüç-Kunt and Detragiache, 1998). The moral hazard problem (financial liberalization combined with explicit deposit insurance and weak law enforcement) also increases the failure probabilities (Hutchison and McDill, 1999).

All of the above macroeconomic problems were observed in Turkey during the period of 1992-2009, contributing to the failure of 26 banks between 1994 and 2003. There is no doubt that the adverse macroeconomic conditions contributed to bank failures in Turkey. However, no banks have failed in Turkey since 2003, despite the global financial crises and the failures experienced by some of the prominent players in the global financial system. It could be argued that the adverse macroeconomic conditions and the unfavorable global financial environment have increased the probability of bank failures. Nevertheless, the nonfailed banks in Turkey have survived in contrast to the group that failed under the same adverse macroeconomic conditions on bank failures, this study underlines two important factors unequivocally contributing to bank failures: 1) internal conditions resulting from a bank's own mismanagement and misguided policies; and 2) the failure of monitoring agencies to warn and to take under close examination the banks with high potential to fail.

A cursory examination of recent bank failures in the United States suggests that similar factors may have played a role in the wave of fresh bank failures there. Future research can determine whether these findings hold true for other countries, and if the world can learn from the Turkish experience. Our gut feelings are that they can.

4. Early Warning System

In order to use the early warning system developed in this paper for bank failures in a future period *t*, we explain the process step-by-step below.

4.1. Select the significant ratios for bank failures

Select the significant original ratios for the banks via ANOVA. These are the ratios whose means differ significantly between failed and non-failed banks. Then, calculate the means and standard deviations for each of these ratios. The means and standard deviations of the significant ratios calculated for the model sample of 1996-2000 are given in Table 10.

Code	Name of ratios	Mean (r_i)	Std. Deviation (r_i)
R2	Loans under follow-up (net) / Total Loans	27.8311	147.7170
R3	Permanent Assets / Total Assets	9.9451	10.2954
R4	Liquid Assets / Total Assets	42.9643	18.1115
R5	Liquid Assets / (Deposits + Non-Deposit Funds)	53.3474	28.9007
R6	FC Liquid Assets / FC Liabilities	42.6753	21.8244
R7	Net Profit (Losses) / Total Assets	-1.5724	21.1828
R8	Net Profit (Losses) / Total Shareholders' Equity	-31.7799	961.1210
R9	Income Before Taxes / Total Assets	-0.4058	21.6515
R10	Interest Income / Total Expenses	94.8643	101.8308
R11	Interest Income / Interest Expenses	221.8283	323.1240
R12	Non-Interest Income / Non-Interest Expenses	-7.0459	122.7749
R13	Total Income / Total Expense	122.8556	45.5298
R14	Total Assets (Share in Sector, %)	2.0823	3.1751
R15	Total Loans (Share in Sector, %)	2.0410	3.1954
R17	Total Assets (Share in Group, %)	7.2436	11.4202
R18	Total Loans (Share in Group, %)	8.1306	15.6838
R26	Net Income / No. of Branches	1.3323	17.7110
R29	(Personnel Expenses + Reserve for Employee Termination Benefit) / Total Assets	2.6997	2.1204

Table 10: Mean and the standard deviation of the original ratios

4.2. Compute the standardized values of the ratios selected

Compute the standardized values of the ratios selected in section 4.1 by using the original values and the mean and standard deviation of each ratio given in table 10.

$$z_{ibt} = z_{in} = \frac{r_{in} - r_i}{s_i}$$

Here z_{in} is the standard value of ratio *i* for observation *n* (bank *b* in period *t*). \overline{r}_i and s_i are the mean and standard deviation of ratio *i* for all the banks and years in the model sample given in table 10. Hence, the original ratios are standardized so that the mean and the standard deviation of the standardized ratios are zero and one, respectively. Thus, the matrix of standardized ratios is

$$Z_{Nxm} = \begin{bmatrix} z_{21} & z_{31} & \cdots & z_{M1} \\ z_{22} & z_{32} & & \\ \vdots & & \ddots & \\ z_{2N} & & & z_{MN} \end{bmatrix}$$

Here *N* is the number of observations (number of banks in each year added for the period of interest, 200 for our test sample). Each observation can be used for risk evaluation of a particular bank in a particular future period, *t*. Note that the matrix Z_{Nxm} starts with the first observation of ratio two, r_2 since the first ratio, r_1 , turns out to be insignificant in the ANOVA test along with r_{16} , $r_{19} - r_{25}$ and $r_{27} - r_{28}$. Thus, the index *M* refers to the last significant ratio, r_{29} , while index *m* indicates the number of significant ratios in the ANOVA test (*m* =18) in Table 11.

4.3. Compute the factor scores matrix

Multiply the standardized ratios matrix (Z_{Nxm}) obtained in step 2 by the component score coefficients matrix (L_{mxk}) given in Table 11, to obtain the factor scores matrix, (F_{Nxk}) . Each row of F_{Nxk} shows the significant factor scores used in the LOGIT analysis for a particular bank *b* in period *t*.

Table 11: Component score coefficient matrix (L_{mxk})

Topics in Middle Eastern and African Economies Vol. 14, September 2012

	F1	F3	F4	F5
Z 2	-0.244	0.033	0.152	-0.008
Z3	-0.023	-0.183	0.241	0.220
Z4	-0.067	0.349	-0.042	-0.092
Z 5	-0.021	0.33	0.036	0.006
Z 6	-0.030	0.387	-0.068	0.156
Z7	0.274	-0.039	-0.025	0.007
Z 8	-0.078	-0.020	0.085	0.118
Z 9	0.268	-0.034	-0.004	0.010
Z 10	0.093	0.034	-0.065	-0.488
Z 11	-0.105	-0.043	0.699	-0.041
Z12	0.078	0.072	-0.094	0.584
Z13	0.103	-0.066	0.438	0.055
Z14	0.006	0.038	-0.014	0.134
Z15	0.015	0.013	-0.002	0.140
Z17	-0.063	0.069	0.059	-0.128
Z18	-0.055	0.056	0.063	-0.214
Z26	0.211	-0.020	-0.066	0.005
Z29	-0.128	0.187	0.043	0.018

$$F_{Nxk} = Z_{Nxm} L_{mxk}$$

$$F_{Nxk} = \begin{bmatrix} z_{21} & z_{31} & \cdots & z_{M1} \\ z_{22} & z_{32} & & \\ \vdots & & \ddots & \\ z_{2N} & & & z_{MN} \end{bmatrix} \begin{bmatrix} l_{11} & l_{31} & l_{41} & l_{51} \\ l_{12} & l_{32} & l_{42} & l_{52} \\ \vdots & & \ddots & \\ l_{1N} & l_{3N} & l_{4N} & l_{5N} \end{bmatrix} = \begin{bmatrix} f_{11} & f_{31} & f_{41} & f_{51} \\ f_{12} & f_{32} & f_{42} & f_{52} \\ \vdots & & \ddots & \\ f_{1N} & f_{3N} & f_{4N} & f_{5N} \end{bmatrix}$$

Here *N* is the number of banks that are selected for evaluation in some future period *t*, and *k* is the number of significant factors (k=4) given in Table 11.

4. 4. Calculate the failure probabilities

Finally, calculate the failure probabilities for each bank, b, in year t using the factor scores (F_{Nxk}) obtained in section 4.3 as independent variables in the logit model.

$$p(y_{bt} = 1) = \frac{1}{1 + e^{-(-2.63 - 3.915F1_{bt} - 1.498F3_{bt} - 1.632F4_{bt} - 0.561F5_{bt})}}$$

To summarize, we provide the steps of the early warning system in Figure 2 below.

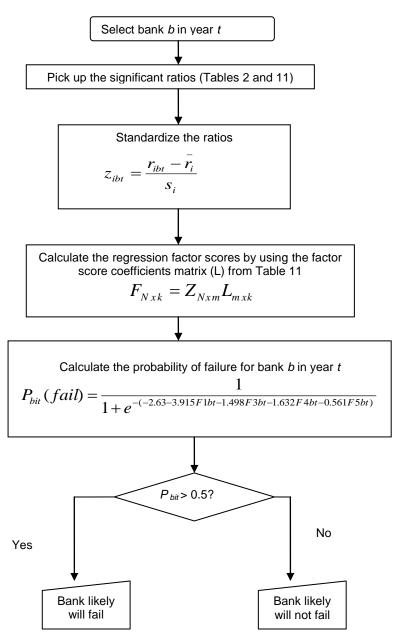


Figure 2: Flow diagram of early warning system

References

- Alam, P., Booth, L.K. and Thordarson, T., 2000. The use of fuzzy clustering algorithm and self-organizing neural networks for identifying potentially failing banks: an experimental study. Expert Systems with Applications 18, 185-199.
- Banking Regulation and Supervision Agency (BRSA) Banking Sector Restructuring Program: Progress Report, 23, October, 2003.
- Canbaş, S., Çabuk, A. and Kılıç, S.B. 2005. Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case. European Journal of Operational Research 166 (2), 528-546.
- Cole, R., A. and Gunther, J.W. 1998. Predicting bank failures: A comparison of on-and offsite monitoring systems. Journal of Financial Services Research 13 (2), 103-117.
- Demirgüç-Kunt, A. and Detragiache, E. 1998. The determinants of banking crises in developing and developed countries. IMF Staff Papers 45 (1).
- Hutchison, M. and McDill, K. 1999. Are all banking crises alike? The Japanese experience in international comparison. NBER Working Paper 7253.
- Jo, H. and Han, I. 1996. Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction. Expert Systems with Applications 11, 415-422.
- Keasey, K. and McGuinness, P. 1990. The failure of UK industrial firms for the period 1976-1984, logistic analysis and entropy measures. Journal of Business Finance and Accounting 17 (1), 119-135.
- Kılıç, S.B. 2003. "Mali başarısızlık tahmininde çok değişkenli istatistiksel yöntemlerin ve çok kriterli analize dayali bir modelin kullanılması: Türk bankacılık sisteminde bir uygulama (Using multivariate statistical methods and a model of multicriteria analysis in predicting financial failure: An application in the Turkish banking sector)", Unpublished Ph.D. Thesis, Çukurova University, Institute of Social Sciences, Adana, Turkey.
- Kolari, J., Glennon, D., Shin, H. and Caputo, M. 2002. Predicting large US commercial bank failures. Journal of Economics & Business 54, 361-387.
- Lam, K.F. and Moy, J.W. 2002. Combining discriminant methods in solving classification problems in two-group discriminant analysis. European Journal of Operational Research 138, 294-301.
- Meyer, P.A. and Piffer, H.W. 1970. Prediction of bank failures. Journal of Finance 25, 853-868.
- Pantolone, C. and Platt, M.B. 1987. Predicting commercial bank failure since deregulation. New England Economic Review, 37-47.
- Rose, P.S. and Kolari, J.W. 1985. Early warning systems as a monitoring device for bank conditions. Quarterly Journal of Business and Economics 24(1), 43-60.
- Shannon, C.E., Weaver W., 1949. The Mathematical Theory of Communication. Chicago and London: University of Illinois Press.
- Shin, S.W. and Kılıç, S.B., 2006. Using PCA-based neural network committee model for early warning of bank failure. Lecture Notes in Computer Science Book Series; Advances in Natural Computation 4221/2006, 289-292.
- Shin, S.W., Lee, K.C. and Kılıç, S.B., 2006. Ensemble prediction of commercial bank failure through diversification of input features. Lecture Notes in Computer Science Book Series; Advances in Artificial Intelligence 4304/2006, 887-896.

- Sinkey, J. 1975. A multivariate statistical analysis of the characteristics of problem banks. Journal of Finance 30(1), 21-38.
- Tam, K.Y. and Kiang, M.Y. 1992. Managerial applications of neural networks: The case of bank failure predictions. Management Science 38(7), 926-947.
- Zavgren, C.V. 1985. Assessing the vulnerability to failure of American industrial firms. A logistic analysis. Journal of Business Finance and Accounting 12 (1), 19-45.